# Dihydrochelerythrine

| Cat. No.:          | HY-N0903                                        |       |          |  |  |
|--------------------|-------------------------------------------------|-------|----------|--|--|
| CAS No.:           | 6880-91-7                                       |       |          |  |  |
| Molecular Formula: | C <sub>21</sub> H <sub>19</sub> NO <sub>4</sub> |       |          |  |  |
| Molecular Weight:  | 349.38                                          |       |          |  |  |
| Target:            | Fungal                                          |       |          |  |  |
| Pathway:           | Anti-infection                                  |       |          |  |  |
| Storage:           | Powder                                          | -20°C | 3 years  |  |  |
|                    |                                                 | 4°C   | 2 years  |  |  |
|                    | In solvent                                      | -80°C | 6 months |  |  |
|                    |                                                 | -20°C | 1 month  |  |  |

### **SOLVENT & SOLUBILITY**

|  |                              | Mass                     |           |            |            |
|--|------------------------------|--------------------------|-----------|------------|------------|
|  | Preparing<br>Stock Solutions | Solvent<br>Concentration | 1 mg      | 5 mg       | 10 mg      |
|  |                              | 1 mM                     | 2.8622 mL | 14.3111 mL | 28.6221 mL |
|  |                              | 5 mM                     | 0.5724 mL | 2.8622 mL  | 5.7244 mL  |
|  |                              | 10 mM                    | 0.2862 mL | 1.4311 mL  | 2.8622 mL  |

## BIOLOGICAL ACTIVITY

Description

Dihydrochelerythrine is a natural compound isolated from Corydalis yanhusuo; has antifungal activity.IC50 value:Target: in vitro: Dihydrochelerythrine showed the highest antifungal activity against B. cinerea Pers, with 98.32% mycelial growth inhibition at 50 µg/mL. Dihydrochelerythrine inhibited spore germination in vitro in a concentration-dependent manner [1]. Dihydrochelerythrine appeared to be less cytotoxic since the viability of cells exposed to 20 microM dihydrochelerythrine for 24h was reduced only to 53%. A dose-dependent induction of apoptosis and necrosis by chelerythrine and dihydrochelerythrine was confirmed by annexin V/propidium iodide dual staining flow cytometry [2]. Dihydrochelerythrine (4) exhibited strong activity against methicillin-resistant Staphylococcus aureus SK1 and moderate activity against Escherichia coli TISTR 780 with MIC values of 8 and 16 µg/mL, respectively [3].

#### REFERENCES

[1]. Feng G, et al. Inhibitory activity of dihydrosanguinarine and dihydrochelerythrine against phytopathogenic fungi. Nat Prod Res. 2011 Jul;25(11):1082-9.

[2]. Vrba J, et al. Chelerythrine and dihydrochelerythrine induce G1 phase arrest and bimodal cell death in human leukemia HL-60 cells. Toxicol In Vitro. 2008





## Jun;22(4):1008-17.

[3]. Tantapakul C, et al. Antibacterial compounds from Zanthoxylum rhetsa. Arch Pharm Res. 2012 Jul;35(7):1139-42.

## Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA