

Product Data Sheet

Chrexanthomycin C

Molecular Weight: 636.51

Target: DNA/RNA Synthesis

Pathway: Cell Cycle/DNA Damage

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description Chrexanthomycin C is an orally active marine natural product with remarkable bioactivities. Chrexanthomycin C has binding affinity for DNA (G4C2)⁴ G4 with a K_d value of 2.8 mM. Chrexanthomycin C can be used for the research of neurodegenerative disease such as amyotrophic lateral sclerosis (ALS)^[1].

IC₅₀ & Target Kd: 2.8 mM (DNA (G4C2)⁴ G4)^[1]

In Vitro Chrexanthomycin C (Compounds cC) (0.1-10 mM) binds DNA (G4C2)⁴ G4 with a K_d value of 2.8 mM^[1].

Chrexanthomycin C has good permeability, low cytotoxicity, and nonhemolytic activity^[1].

Chrexanthomycin C (1.57 μ M) rescues G4C2 EHR-related pathologies in cells^[1].

Chrexanthomycin C selectively binds to DNA and RNA G4C2 G4s^[1].

Chrexanthomycin C (0-100 μ M) dramatically reduceS G4C2 EHR-caused cell death, diminish G4C2 RNA foci in (G4C2)29-expressing Neuro2a cells, and significantly eliminate ROS in HT22 cells^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[1]

Cell Line:	HEK293T cells
Concentration:	0.16, 1.57 and 15.67 μM
Incubation Time:	24 h
Result:	Showed no cytotoxicity up to the concentration of 10 μg/mL.

In Vivo Chrexanthomycin C (Compounds cC) (fed; 100 μ M) significantly rescues eye degeneration and improve locomotor deficits in (G4C2)29-expressing^[1].

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

Animal Model:	$Drosophila^{[1]}$
Dosage:	100 μΜ
Administration:	fed

Result:	Rescued G4C2 EHR-Related Pathologies in Drosophila.

REFERENCES

[1]. Aifang Cheng, et al. Selective C9orf72 G-Quadruplex-Binding Small Molecules Ameliorate Pathological Signatures of ALS/FTD Models. Journal of Medicinal Chemistry Article ASAP.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com