Product Data Sheet

4-Hydroxyphenylacetic acid

Cat. No.: HY-N1902 CAS No.: 156-38-7 Molecular Formula: $C_8H_8O_3$

Molecular Weight:

 Target:
 Keap1-Nrf2; Endogenous Metabolite

 Pathway:
 NF-κΒ; Metabolic Enzyme/Protease

152.15

Storage: 4°C, stored under nitrogen

* In solvent: -80°C, 6 months; -20°C, 1 month (stored under nitrogen)

SOLVENT & SOLUBILITY

In Vitro

DMSO : ≥ 100 mg/mL (657.25 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	6.5725 mL	32.8623 mL	65.7246 mL
	5 mM	1.3145 mL	6.5725 mL	13.1449 mL
	10 mM	0.6572 mL	3.2862 mL	6.5725 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: \geq 2.5 mg/mL (16.43 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: \geq 2.5 mg/mL (16.43 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (16.43 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of $Nrf2^{[1]}$.
IC ₅₀ & Target	Human Endogenous Metabolite
In Vivo	4-Hydroxyphenylacetic acid (6, 12, or 25 mg/kg) increases Nrf2 translocation to the nucleus and enhances the activity of phase II and antioxidant enzymes. The protein levels of nuclear Nrf2 are increased by 170% and 230% in pre-

treated 12 and 25 mg/kg 4-Hydroxyphenylacetic acid groups, respectively, compared with the control group. The 4-Hydroxyphenylacetic acid pretreatment at a final dose of 25 mg/kg markedly and selectively up-regulated the target genes of phase II enzymes and resulted in higher up-regulation than that of the control group by 270%, 400%, and 500% or UGT1A1, UGT1A9, and SULT2A1, respectively. 4-Hydroxyphenylacetic acid also suppresses the expression of CYP2E1^[1].

REFERENCES

2

[1]. Zhao H, et al. 4-Hydroxyphenylacetic Acid Prevents Acute APAP-Induced Liver Injury by Increasing Phase IIand Antioxidant Enzymes in Mice. Front Pharmacol. 2018 Jun 19;9:653.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

www.MedChemExpress.com