MedChemExpress

Atraric acid

Cat. No.:	HY-N2908
CAS No.:	$4707-47-5$
Molecular Formula:	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$
Molecular Weight:	196.2
Target:	Androgen Receptor; NO Synthase; p38 MAPK; NF-kB
Pathway:	Vitamin D Related/Nuclear Receptor; Immunology/Inflammation; MAPK/ERK
	Pathway; NF-kB
Storage:	$4^{\circ} \mathrm{C}$, stored under nitrogen
	${ }^{*}$ In solvent: $-80^{\circ} \mathrm{C}, 6$ months; $-20^{\circ} \mathrm{C}, 1$ month (stored under nitrogen)

SOLVENT \& SOLUBILITY

In Vitro

DMSO : 100 mg/mL (509.68 mM; Need ultrasonic)

	Solvent Mass			
Concentration	1 mg	5 mg	10 mg	
Preparing	Stock Solutions	1 mM	5.0968 mL	25.4842 mL
	5 mM	1.0194 mL	50.9684 mL	
	10 mM	0.5097 mL	2.5484 mL	10.1937 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo 1. Add each solvent one by one: 10% DMSO >> 90\% corn oil Solubility: $\geq 2.5 \mathrm{mg} / \mathrm{mL}(12.74 \mathrm{mM})$; Clear solution

BIOLOGICAL ACTIVITY

Description
IC_{50} \& Target \quad Androgen receptor, NO synthesis, MAPK-NFkB pathway ${ }^{[1][2]}$

In Vitro used to research prostate diseases and inflammatory diseases ${ }^{[1][2]}$.

Atraric acid (Methyl atrarate) is a specific androgen receptor (AR) antagonist with anti-inflammatory and anticancer effects. Atraric acid represses the expression of the endogenous prostate specific antigen gene in both LNCaP and C4-2 cells. Atraric acid can also inhibit the synthesis of NO and cytokine, and suppress the MAPK-NFkB signaling pathway. Atraric acid can be

Atraric acid ($10 \mu \mathrm{M}$; CV1 cells) represses the transactivation function mediated by Dihydrotestosterone-induced human $\mathrm{AR}^{[1]}$

Atraric acid ($10 \mu \mathrm{M}$; PCa cells) inhibits the expression of the PSA gene in both androgen-dependent and androgenindependent PCa cells ${ }^{[1]}$
Atraric acid (1-300 $\mu \mathrm{M} ; 24 \mathrm{~h}$) dose-dependently inhibits pro-inflammatory cytokine, nitric oxide, prostaglandin E2 in LPS stimulated RAW264.7 cells, but does not influence the cell viability ${ }^{[2]}$.

Atraric acid (100 and $300 \mu \mathrm{M} ; 18 \mathrm{~h}$ or 4 h) downregulates the expression of phosphorylated IkB , extracellular signal-regulated kinases (ERK) and nuclear factor kappa B (NFkB) signaling pathway to exhibit anti-inflammatory effects in LPS-stimulated RAW264.7 cells ${ }^{[2]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.
Cell Viability Assay ${ }^{[2]}$

Cell Line:	RAW264.7 cells
Concentration:	$1-300 \mu \mathrm{M}$
Incubation Time:	24 h
Result:	Did not influence the cell viability.

Western Blot Analysis ${ }^{[2]}$

Cell Line:	RAW264.7 cells		
Concentration:	100 and $300 \mu \mathrm{M}$		18 h or 4 h
:---		Incubation Time:	
:---			
Result:		Inhibited LPS-Induced expression of iNOS and COX-2 in a dose-dependent manner.	
:---			
Suppressed LPS-stimulated phosphorylation of the Nfk signaling pathway.			

In Vivo

Atraric acid (10, $30 \mathrm{mg} / \mathrm{kg}$; i.p.; single dosage) inhibits the production of pro-inflammatory cytokines and reduces pathological damages in LPS-induced endotoxin shock mice ${ }^{[2]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Female BALB/c mice (7 weeks old, 17-20 g; LPS-induced endotoxin shock)[2]
Dosage:	$10,30 \mathrm{mg} / \mathrm{kg}$
Administration:	i.p.; single dosage
Result:	Inhibited the production of pro-inflammatory cytokines. Reduced pathological damages such as vasodilation and bleeding.

REFERENCES

[1]. Roell D, Baniahmad A. The natural compounds atraric acid and N-butylbenzene-sulfonamide as antagonists of the human androgen receptor and inhibitors of prostate cancer cell growth. Mol Cell Endocrinol. 2011 Jan 30;332(1-2):1-8.
[2]. Papaioannou M, et al. The natural compound atraric acid is an antagonist of the human androgen receptor inhibiting cellular invasiveness and prostate cancer cell growth. J Cell Mol Med. 2009 Aug;13(8B):2210-2223.

Caution: Product has not been fully validated for medical applications. For research use only.
Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com
Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

