Okadaic acid sodium

MedChemExpress

®

Cat. No.:	HY-N6785A	
CAS No.:	209266-80-8	
Molecular Formula:	$C_{44}H_{67}NaO_{13}$	
Molecular Weight:	826.98	
Target:	Phosphatase; Apoptosis	
Pathway:	Metabolic Enzyme/Protease; Apoptosis	
Storage:	-20°C, sealed storage, away from moisture * In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)	

Description	Okadaic acid sodium, a marine toxin, is an inhibitor of protein phosphatases (PP). Okadaic acid (sodium) has a significantly higher affinity for PP2A (IC ₅₀ =0.1-0.3 nM), and inhibits PP1 (IC ₅₀ =15-50 nM), PP3 (IC ₅₀ =3.7-4 nM), PP4 (IC ₅₀ =0.1 nM), PP5 (IC ₅₀ =3.5 nM), but does not inhibit PP2C. Okadaic acid sodium increases of phosphorylation of a number of proteins by inhibiting PP, and acts a tumor promoter. Okadaic acid sodium induces tau phosphorylation ^{[1][2]} .				
IC₅₀ & Target	PP1 15-50 nM (IC ₅₀) PP5 3.5 nM (IC ₅₀)	PP2A 0.1-0.3 nM (IC ₅₀) PP2B ~4000 nM (IC ₅₀)	PP3 3.7-4 nM (IC ₅₀) PP7 >1000 nM (IC ₅₀)	PP4 0.1 nM (IC ₅₀)	
In Vitro	Okadaic acid sodium (0-100 r Okadaic acid sodium (10 nM; MCE has not independently o Cell Proliferation Assay ^[3] Cell Line: Concentration: Incubation Time: Result:	nM; 24 h or 48 h) inhibits the proliferation of AGS, MNK-45, Caco 2 cells ^[3] . ; 8 hours) increases Drp1 phosphorylation and mitochondrial fission in rat cortical neurons ^[4] . confirmed the accuracy of these methods. They are for reference only. AGS, MNK-45 and Caco 2 cell lines 0-100 nM 24 h or 48 h Inhibited the proliferation of AGS, MNK-45, Caco 2 cells.			
In Vivo	Okadaic acid sodium (100 μM; injected unilaterally to the lateral amygdala) induces Tau phosphorylation and protein aggregation in anatomically distinct brain regions 24 h post-injection ^[5] . Induction of alzheimer's disease model ^[6]				
	 Background 				

CUSTOMER VALIDATION

- Cancer Lett. 2021 Mar 3;S0304-3835(21)00101-4.
- Int J Biol Macromol. 2023 Jun 2;125171.
- Int J Biochem Cell Biol. 2021, 106036.
- Biochem Biophys Res Commun. 2023 Nov 5, 680, Pages 127-134.
- bioRxiv. 2023 Jun 6.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Natalia Dos Santos Tramontin, et al. Gold Nanoparticles Treatment Reverses Brain Damage in Alzheimer's Disease Model . Mol Neurobiol. 2020, 57, 2.

[2]. Kleppe R, et al. Cell Death Inducing Microbial Protein Phosphatase Inhibitors--Mechanisms of Action. Mar Drugs. 2015 Oct 22;13(10):6505-20.

[3]. Valdiglesias V, et al. Okadaic acid: more than a diarrheic toxin. Mar Drugs. 2013 Oct 31;11(11):4328-49.

[4]. del Campo M, et al. Okadaic acid toxin at sublethal dose produced cell proliferation in gastric and colon epithelial cell lines. Mar Drugs. 2013;11(12):4751-4760.

[5]. Cho MH, et al. Increased phosphorylation of dynamin-related protein 1 and mitochondrial fission in okadaic acid-treated neurons. Brain Res. 2012 May 15;1454:100-10.

[6]. Baker S, et al. A local insult of okadaic acid in wild-type mice induces tau phosphorylation and protein aggregation in anatomically distinct brain regions. Acta Neuropathol Commun. 2016;4:32.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA