

Product Data Sheet

Cyclic ADP-ribose

 Cat. No.:
 HY-N7395

 CAS No.:
 119340-53-3

 Molecular Formula:
 $C_{15}H_{21}N_5O_{13}P_2$

Molecular Weight: 541.3

Target: Calcium Channel; TRP Channel; Endogenous Metabolite

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling; Metabolic Enzyme/Protease

Storage: -80°C

SOLVENT & SOLUBILITY

In Vitro

 $\rm H_2O:5~mg/mL~(9.24~mM;\ Need~ultrasonic\ and\ warming)$

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.8474 mL	9.2370 mL	18.4740 mL
	5 mM	0.3695 mL	1.8474 mL	3.6948 mL
	10 mM			

Please refer to the solubility information to select the appropriate solvent.

BIO	ו חכו		ACT	IVIT	v
DIU	LUG	ICAL	ACI	1111	ш

Description	Cyclic ADP-ribose (cADPR) is a potent second messenger for calcium mobilization that is synthesized from NAD $^+$ by an ADP-ribosyl cyclase. Cyclic ADP-ribose increases cytosolic calcium mainly by Ryanodine receptor-mediated release from endoplasmic reticulum and also by extracellular influx through the opening of TRPM2 channels ^{[1][2][3]} .
IC ₅₀ & Target	Calcium mobilization $^{[1]}$ TRPM2 channels $^{[3]}$ Endogenous metabolite $^{[1]}$
In Vitro	cADPR (20 nM) elicits a large rapid Ca ²⁺ release in sea urchin eggs homogenates ^[1] . cADPR (100 μ M; 10 min) induces a sustained elevation of intracellular calcium concentration in a subset (64%) of cultured astrocytes ^[4] . cADPR (100 μ M) and heat (35-38.5 Ξ) stimulates oxytocin OT release from the isolated hypothalami of male mice in culture ^[5] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	cADPR (100 μ M; push-pull type of brain microperfusion) elevats OT concentrations in ordinate or subordinate mice ^[5] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

- [1]. Ribeiro JM, et al. Specific cyclic ADP-ribose phosphohydrolase obtained by mutagenic engineering of Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase. Sci Rep. 2018 Jan 18;8(1):1036.
- [2]. Galione A, et, al. Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science. 1991 Sep 6;253(5024):1143-6.
- [3]. Lee HC, et, al. Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J Biol Chem. 1989 Jan 25;264(3):1608-15.
- [4]. Verderio C, et, al. Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes. J Neurochem. 2001 Aug;78(3):646-57.
- [5]. Zhong J, et, al. Cyclic ADP-Ribose and Heat Regulate Oxytocin Release via CD38 and TRPM2 in the Hypothalamus during Social or Psychological Stress in Mice. Front Neurosci. 2016 Jul 22;10:304.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA