RedChemExpress

Product Data Sheet

Inhibitors • Screening Libraries • Proteins

OH

 NH_2

Nε,Nε,Nε-Trimethyllysine-d₉ chloride

Cat. No.:	HY-N7404S	
Molecular Formula:	C ₉ H ₁₂ D ₉ ClN ₂ O ₂	
Molecular Weight:	233.78	$D^{D} $
Target:	Endogenous Metabolite	
Pathway:	Metabolic Enzyme/Protease	
Storage:	4°C, sealed storage, away from moisture	DD
	* In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)	

SOLVENT & SOLUBILITY

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	4.2775 mL	21.3876 mL	42.7753 mL
	5 mM	0.8555 mL	4.2775 mL	8.5551 mL
	10 mM	0.4278 mL	2.1388 mL	4.2775 mL

Description	Νε,Νε-Trimethyllysine-d ₉ (chloride) is the deuterium labeled Νε,Νε,Νε-Trimethyllysine (chloride)[1]. Νε,Νε,Νε- Trimethyllysine chloride serves as a precursor for gut flora-dependent formation of Ν,Ν,Ν-trimethyl-5-aminovaleric acid (TMAVA)[2].		
In Vitro	Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		

REFERENCES

[1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019 Feb;53(2):211-216.

[2]. Zhao M, et al. TMAVA, a Metabolite of Intestinal Microbes, Is Increased in Plasma From Patients With Liver Steatosis, Inhibits γ-Butyrobetaine Hydroxylase, and Exacerbates Fatty Liver in Mice. Gastroenterology. 2020;158(8):2266-2281.e27.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA