GLP-1(7-36) Acetate

Cat. No.: HY-P0054
CAS No.: 1119517-19-9
Molecular Formula: C₁₄₉H₂₂₆N₄₀O₄₅.xC₂H₄O₂
Molecular Weight: 3394.67
Sequence: His-Ala-Glu-Gly-Thr-Thr-Ser-Asp-Val-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val-Lys-Gly-Arg-NH₂
Sequence Shortening: HAEGFTSDVSYLEGQAKEFWLVKGRNH2
Target: Glucagon Receptor
Pathway: GPCR/G Protein
Storage: Powder
-80°C: 2 years
-20°C: 1 year
In solvent
-80°C: 6 months
-20°C: 1 month

SOLVENT & SOLUBILITY

In Vitro
<table>
<thead>
<tr>
<th>Solvent</th>
<th>1 mg</th>
<th>5 mg</th>
<th>10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O: 50 mg/mL (14.73 mM; Need ultrasonic)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMSO: < 1 mg/mL (insoluble or slightly soluble)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preparation of Stock Solutions

<table>
<thead>
<tr>
<th>Concentration</th>
<th>1 mg</th>
<th>5 mg</th>
<th>10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM</td>
<td>0.2946 mL</td>
<td>1.4729 mL</td>
<td>2.9458 mL</td>
</tr>
<tr>
<td>5 mM</td>
<td>0.0589 mL</td>
<td>0.2946 mL</td>
<td>0.5892 mL</td>
</tr>
<tr>
<td>10 mM</td>
<td>0.0295 mL</td>
<td>0.1473 mL</td>
<td>0.2946 mL</td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description
GLP-1(7-36) Acetate (Human GLP-1-(7-36)-amide Acetate) is a major intestinal hormone that stimulates glucose-induced insulin secretion from β cells.

In Vitro
Cells treated with phorbol 12-myristate 13-acetate for 2 h has significantly higher active GLP-1(7-36) Acetate (Human GLP-1-(7-36)-amide Acetate) concentrations in the media than those in the control. The glucose treatment also increases active GLP-1 secretion from cells in dose-dependent manner. Palmitic, oleic, linoleic or linolenic acid dose-dependently stimulated active GLP-1 secretion from cells. Active GLP-1 secretion is significantly greater with unsaturated fatty acids such as oleic, linoleic and linolenic acids than with palmitic acid. The treatment of NCI-H716 cells with CPE dose-dependently increases active GLP-1 concentrations in the media. A 37% increase is observed in
active GLP-1 secretion from these cells at a concentration of 0.1 % CPE[1].

In Vivo

Gastric administration of glucose increases active GLP-1(7-36) amide levels in the portal blood after 10 min, followed by a marked decrease at 30 min. The gastric administration of TO also increases active GLP-1 levels after 10 min, and followed by a decrease to basal levels at 60 min. Individually, glucose and TO increase the secretion of GLP-1 in a dose-dependent manner. Furthermore, the co-administration of glucose and TO additively increase peak GLP-1 levels. CPE-administered mice have higher active GLP-1 levels in the portal blood at 10 and 30 min than those in the control mice. When glucose is administered with CPE, active GLP-1 and insulin levels in the portal blood are slightly higher in CPE-administered mice than in the control mice. High-fat diet-fed C57BL/6J mice develop hyperglycaemia and impair glucose tolerance[1].

CUSTOMER VALIDATION

See more customer validations on www.MedChemExpress.com

REFERENCES