Corticotropic-releasing factor human

Cat. No.: HY-P0086
CAS No.: 86784-80-7
Molecular Formula: C\textsubscript{208}H\textsubscript{344}N\textsubscript{60}O\textsubscript{63}S\textsubscript{2}
Molecular Weight: 4757.45

Sequence: Ser-Glu-Glu-Pro-Pro-Ile-Ser-Leu-Thr-Phe-His-Leu-Leu-Arg-Glu-Val-Leu
-Glu-Met-Ala-Arg-Ala-Glu-Gln-Leu-Ala-Gln-Ala-His-Ser-Asn-Arg-Lys-Leu-Met-Glu-Ile-Ile-NH\textsubscript{2}

Sequence Shortening: SEEPPISLDLTFHLLREVLEMAREAQLAQQAHSNRKLMEI-I-NH\textsubscript{2}

Target: Others
Pathway: Others

Storage: Powder
-80°C 2 years
-20°C 1 year
In solvent
-80°C 6 months
-20°C 1 month

SOLVENT & SOLUBILITY

<table>
<thead>
<tr>
<th>In Vitro</th>
<th>H\textsubscript{2}O</th>
<th>16.66 mg/mL (3.50 mM; Need ultrasonic and warming)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Preparing Stock Solutions</th>
<th>Solvent Concentration</th>
<th>1 mg</th>
<th>5 mg</th>
<th>10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM</td>
<td>0.2102 mL</td>
<td>1.0510 mL</td>
<td>2.1020 mL</td>
<td></td>
</tr>
<tr>
<td>5 mM</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>10 mM</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description
Corticotropic-releasing factor human (Human CRF; Human corticotropin-releasing factor) stimulates the synthesis and secretion of adrenocorticotropic in the anterior pituitary.

In Vitro
CRF increases excitability of type II dBNST neurons through activation of the AC-cAMP-PKA pathway, thereby causing pain-induced aversive responses[1].

In Vivo
The findings are consistent with a mechanism whereby the excess CRF that characterizes stress-related diseases initiates distinct cellular processes in male and female brains, as a result of sex-biased CRF1 signaling[2]. CRF injection on food intake (FI), CRF suppresses FI in 3-month male and female animals[3].

1 CRF increases excitability of type II dBNST neurons through activation of the AC-cAMP-PKA pathway, thereby causing pain-induced aversive responses.

2 The findings are consistent with a mechanism whereby the excess CRF that characterizes stress-related diseases initiates distinct cellular processes in male and female brains, as a result of sex-biased CRF1 signaling.

3 CRF injection on food intake (FI), CRF suppresses FI in 3-month male and female animals.
REFERENCES

Caution: Product has not been fully validated for medical applications. For research use only.
Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com
Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA