Phe-Met-Arg-Phe, amide acetate

Cat. No.: HY-P0249B CAS No.: 152165-14-5 Molecular Formula: $C_{31}H_{46}N_8O_6S$

Molecular Weight: 658.81

Sequence: Phe-Met-Arg-Phe-NH2

Sequence Shortening: FMRF-NH2

Target: Potassium Channel

Pathway: Membrane Transporter/Ion Channel

Please store the product under the recommended conditions in the Certificate of Storage:

Analysis.

Product Data Sheet

BIOLOGICAL ACTIVITY

Description	Phe-Met-Arg-Phe, amide acetate dose dependently (ED $_{50}$ =23 nM) activates a K $^{+}$ current in the peptidergic caudodorsal neurons $^{[1]}$.
IC ₅₀ & Target	ED50: 23 nM (K ⁺ current) ^[1]
In Vitro	In the molluscan central nervous system, Phe-Met-Arg-Phe, amide (FMRFa) acetate acts on K ⁺ channels in sensory, motor, and neuroendocrine neurones. Phe-Met-Arg-Phe, amide acetate activates a novel K ⁺ current that is characterized by a combined voltage- and receptor-dependent gating mechanism, with both factors being necessary for opening of the channels ^[1] . Phe-Met-Arg-Phe, amide (1 μ M) acetate significantly inhibits glucose stimulated (300 mg/dL) insulin release (p<0.005) and somatostatin release (p<0.01) from the isolated perfused pancreas ^[2] . Phe-Met-Arg-Phe, amide (FMRF-NH2) (1 and 10 μ M) acetate is without effect on glucagon secretion, either in low glucose (50 mg/dL), high glucose (300 mg/dL), or during arginine stimulation (5 mM) ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Phe-Met-Arg-Phe, amide (FMRFamide) acetate stimulates growth hormone secretion in conscious OVX rats. The presence of Phe-Met-Arg-Phe, amide-like immunoreactivity in neuronal elements in the hypothalamus suggested a role for this in the hypothalamic control of the anterior pituitary function. The injection of 200 ng (313.8 pM) of FMRFamide (in 2 uL) produces a significantly increased plasma GH 15 min after injection. The GH-increasing effect of 400-800 ng (627-1255 pM) of FMRFamide is already developed after 5 min and lasted up to 30 min ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Kits KS, et al. Phe-Met-Arg-Phe-amide activates a novel voltage-dependent K+ current through a lipoxygenasepathway in molluscan neurones. J Gen Physiol. 1997

[2]. Sorenson RL, et al. Phe-met-arg-phe-amide (FMRF-NH2) inhibits insulin and somatostatin secretion and anti-FMRF-NH2 sera detects pancreatic polypeptide cells in the rat islet. Peptides. 1984 Jul-Aug;5(4):777-82.

B]. Ottlecz A, et al. Phe-Met-Arş	g-Phe-amide (FMRFamide) stim	ulated growth hormone secret	ion in conscious OVX rats. Neuropeptides. 19	87 Feb-Mar;9(2):161-7.
			dical applications. For research use only	
	Tel: 609-228-6898 Address: 1 D	Fax: 609-228-5909 eer Park Dr, Suite Q, Monmo	E-mail: tech@MedChemExpress.con uth Junction, NJ 08852, USA	1

Page 2 of 2 www.MedChemExpress.com