SOR-C13

Cat. No.:	HY-P1651
CAS No.:	1187852-48-7
Molecular Formula:	C ₇₂ H ₁₁₆ N ₂₀ O ₁₉
Molecular Weight:	1565.81
Sequence Shortening:	KEFLHPSKVDLPR
Target:	TRP Channel
Pathway:	Membrane Transporter/Ion Channel; Neuronal Signaling
Storage:	Please store the product under the recommended conditions in the Certificate of Analysis.

Product Data Sheet

BIOLOGICAL ACTIVITY Description SOR-C13, a carboxy-terminal truncated peptide, is a high-affinity TRPV6 antagonist with an IC₅₀ value of 14 nM. TRPV6 is a non-voltage gated calcium channel that is associated with malignancy and poor prognosis in breast cancer. SOR-C13 has anticancer activity^[1]. IC₅₀ & Target TRPV6 14 nM (IC₅₀) In Vivo SOR-C13 (i.p.; 400,600, 800 mg/kg; daily; on days 1 to 12) can effectively inhibit the growth of tumor in female NOD/SCID mice with SKOV-3 cell^[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only. Animal Model: Female NOD/SCID mice with SKOV-3 cell^[2] Dosage: 400,600, 800 mg/kg Administration: IP; daily; on days 1 to 12 Result: Effectively inhibited the growth of tumor.

REFERENCES

[1]. S Fu, et al. Erratum to: First-in-human phase I study of SOR-C13, a TRPV6 calcium channel inhibitor, in patients with advanced solid tumors. Invest New Drugs. 2017 Jun;35(3):397.

[2]. Hui Xue, et al. Inhibition of Transient Receptor Potential Vanilloid 6 channel, elevated in human ovarian cancers, reduces tumour growth in a xenograft model. J Cancer. 2018 Aug 6;9(17):3196-3207.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA