GLP-2(3-33) (Leu- ${ }^{13} \mathrm{C}_{6},{ }^{15} \mathrm{NN}$) (TFA)

Cat. No.:	$\mathrm{HY}-\mathrm{P} 2625 \mathrm{~S} 1$
Molecular Formula:	$\mathrm{C}_{150}{ }^{13} \mathrm{C}_{6} \mathrm{H}_{242} \mathrm{~N}_{39}{ }^{15} \mathrm{NO}_{53} \mathrm{~S}_{2} \mathrm{xC}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}$
Sequence:	Asp-Gly-Ser-Phe-Ser-Asp-Glu-Met-Asn-Thr-Ile-Leu-Asp-Asn-Leu-Ala-Ala-Arg-Asp-Phe-Il
	e-Asn-Trp-\{Leu-13C6,15N\}-Ile-Gln-Thr-Lys-Ile-Thr-Asp
Sequence Shortening:	DGSFSDEMNTI-\{Leu-13C6,15N\}-DNLAARDFINWLIQTKITD
Target:	Isotope-Labeled Compounds
Pathway:	Others
Storage:	Please store the product under the recommended conditions in the Certificate of
	Analysis.

BIOLOGICAL ACTIVITY

Description GLP-2(3-33) (Leu- $\left.{ }^{13} \mathrm{C}_{6},{ }^{15} \mathrm{~N}\right)$ TFA is ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ labeled GLP-2(3-33) (HY-P2625). GLP-2(3-33), generated naturally by dipeptidylpeptidase IV (DPPIV), acts as a partial agonist on GLP-2 receptor ($\mathrm{EC}_{50}=5.8 \mathrm{nM}$).

In Vitro
Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs ${ }^{[1]}$.
MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Baldassano S, et al. Influence of endogenous glucagon-like peptide-2 on lipid disorders in mice fed a high-fat diet. Endocr Res. 2016 Nov;41(4):317-324.
[2]. Thulesen J, Knudsen LB, Hartmann B, Hastrup S, Kissow H, Jeppesen PB, Ørskov C, Holst JJ, Poulsen SS. The truncated metabolite GLP-2 (3-33) interacts with the GLP2 receptor as a partial agonist. Regul Pept. 2002 Jan 15;103(1):9-15.
[3]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019 Feb;53(2):211-216.

