Product Data Sheet

Dabcyl-YVADAPV-EDANS

Cat. No.:	$\mathrm{HY}-\mathrm{P} 2628$
CAS No.:	$161877-70-9$
Molecular Formula:	$\mathrm{C}_{61} \mathrm{H}_{76} \mathrm{~N}_{12} \mathrm{O}_{14} \mathrm{~S}$
Molecular Weight:	1233.39
Target:	Fluorescent Dye
Pathway:	Others
Storage:	Please store the product under the recommended conditions in the Certificate of
	Analysis.

BIOLOGICAL ACTIVITY

Description	Dabcyl-YVADAPV-EDANS is a fluorogenic interleukin- 1β converting enzyme (ICE) substrate for measuring ICE-like protease activity. Dabcyl-YVADAPV-EDANS detects fluorescence at 360 nm excitation and 480 nm emission wavelengths. ICE-like protease is a critical mediator of K^{+}deprivation-induced apoptosis of cerebellar granule neurons ${ }^{[1]}$.
In Vitro	ICE activity assay methods ${ }^{[1]}:$ (1) Cerebellar granule neurons were seeded in 24 -well plates at a density of $2 \cdot 1^{*} 10^{5} \mathrm{cells} / \mathrm{cm}^{2}$. (2) After the switch to medium containing low (5 mM) or high (25 mM) concentrations of KCl at DIV 8, cerebellar granule neurons were washed with Locke's buffer and made permeable by 0.03% Digitonin (HY-N4000). (3) After 10 min , DABCYL-YVADAPV-EDANS $(20 \mu \mathrm{M})$ was added. (4) Fluorescence was determined in 10 min intervals for 1 h using 360 nm excitation and 480 nm emission wavelengths in the 24-well plates. (5) The fluorometric intensity peaked at 20 min . This time point was used for statistical analysis. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Schulz JB, et al. Potassium deprivation-induced apoptosis of cerebellar granule neurons: a sequential requirement for new mRNA and protein synthesis, ICE-like protease activity, and reactive oxygen species. J Neurosci. 1996 Aug 1;16(15):4696-706.

Caution: Product has not been fully validated for medical applications. For research use only.
Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com
Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

