

Product Data Sheet

Inhibitors • Screening Libraries • Proteins

Cagrilintide acetate

Cat. No.:	HY-P3462A		
Molecular Formula:	C ₁₉₆ H ₃₁₆ N ₅₄ O ₆₁ S ₂		
Molecular Weight:	4469.06		
Sequence:	{Eicosanedioic acid-γ-Glu}-Lys-Cys-Asn-Thr-Ala-Thr-Cys-Ala-Thr-Gln-Arg-Leu-Ala-Glu- Phe-Leu-Arg-His-Ser-Ser-Asn-Asn-Phe-Gly-Pro-Ile-Leu-Pro-Pro-Thr-Asn-Val-Gly-Ser-As n-Thr-Pro-NH2 (Disulfide bridge:Cys3-Cys8)		
Sequence Shortening:	{Eicosanedioic acid-γ-Glu}-KCNTATCATQRLAEFLRHSSNNFGPILPPTNVGSNTP-NH2 (Di sulfide bridge:Cys3-Cys8)		
Target:	CGRP Receptor		
Pathway:	GPCR/G Protein; Neuronal Signaling		
Storage:	Sealed storage, away from moisture and light, under nitrogen Powder -80°C 2 years -20°C 1 year * In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture and light, under nitrogen)		

SOLVENT & SOLUBILITY

In Vitro

DMSO : 100 mg/mL (22.38 mM; Need ultrasonic) H₂O : 50 mg/mL (11.19 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	0.2238 mL	1.1188 mL	2.2376 mL
	5 mM	0.0448 mL	0.2238 mL	0.4475 mL
	10 mM	0.0224 mL	0.1119 mL	0.2238 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIV	VITY
Description	Cagrilintide acetate is a non-selective AMYR/CTR agonist and long-acting acylated amylase analogue. Cagrilintide acetate causes a reduction in food intake and significant weight loss in a dose-dependent manner. Cagrilintide acetate can be used in obesity studies ^{[1][2][3]} .
IC ₅₀ & Target	AMYR, CTR ^{[1][2][3]} .
In Vivo	Cagrilintide acetate (compound 23) (0.1, 1, 3, 10, 30 nmol/kg; s.c.single) reduces food intake in the rat ^[1] . Cagrilintide acetate (10 nmol/kg; i.v. or s.c.; single) shows good pharmacokinetic parameters ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Sprague Dawley male rats (12-week-old; ~400 g) ^[1]	
Dosage:	0.1, 1, 3, 10, 30 nmol/kg	
Administration:	Subcutaneous injection; single	
Result:	Reduced food intake in the rat for several days at doses in the range of 1-10 nmol/kg $$	
Animal Model:	Sprague Dawley male rats (12-week-old; ~400 g) ^[1]	
Dosage:	10 nmol/kg	
Administration:	Intravenous injection or subcutaneous injection; single	
Result:	Showed good pharmacokinetic parameters with $T_{1/2}$ of 20, 27 h for i.v. and s.c., respectively.	

REFERENCES

[1]. Kruse T, et al. Development of Cagrilintide, a Long-Acting Amylin Analogue. J Med Chem. 2021 Aug 12;64(15):11183-11194.

[2]. Fletcher MM, et al. AM833 Is a Novel Agonist of Calcitonin Family G Protein-Coupled Receptors: Pharmacological Comparison with Six Selective and Nonselective Agonists. J Pharmacol Exp Ther. 2021 Jun;377(3):417-440.

[3]. Dehestani B, et al. Amylin as a Future Obesity Treatment. J Obes Metab Syndr. 2021 Dec 30;30(4):320-325.

Caution: Product has not been fully validated for medical applications. For research use only.