**Product** Data Sheet

# Inhibitors



# **Acetyl Gastric Inhibitory Peptide (human)**

Cat. No.: HY-P3580 CAS No.: 299898-33-2 Molecular Formula:  $C_{228}H_{340}N_{60}O_{67}S$ 

5025.6 Molecular Weight:

Ac-Tyr-Ala-Glu-Gly-Thr-Phe-Ile-Ser-Asp-Tyr-Ser-Ile-Ala-Met-Asp-Lys-Ile-His-Gln-Gln-As Sequence:

p-Phe-Val-Asn-Trp-Leu-Leu-Ala-Gln-Lys-Gly-Lys-Lys-Asn-Asp-Trp-Lys-His-Asn-Ile-Thr-

Sequence Shortening: Ac-YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ

Target: Insulin Receptor

Pathway: Protein Tyrosine Kinase/RTK

Please store the product under the recommended conditions in the Certificate of Storage:

Analysis.

#### **BIOLOGICAL ACTIVITY**

| D    |     | 4.5  |
|------|-----|------|
| Desc | rın | TION |

Acetyl Gastric Inhibitory Peptide (human) is a fatty acid derivatized analog of glucose-dependent insulinotropic polypeptide with improved antihyperglycaemic and insulinotropic properties. Acetyl Gastric Inhibitory Peptide (human) can be used for research of diabetes, insulin resistance and obesity[1][2][3].

### In Vitro

Acetyl Gastric Inhibitory Peptide (human) induces cyclic adenosine 3'5' monophosphate (cAMP) production with an EC<sub>50</sub> value of 1.9 nM in Chinese hamster lung fibroblast cells transfected with the human GIP receptor<sup>[1]</sup>.

Acetyl Gastric Inhibitory Peptide (human) (10<sup>-13</sup>-10<sup>-8</sup> nM) shows potent effect at stimulating insulin release compared to the native GIP in BRIN-BD11 cells<sup>[1]</sup>.

Acetyl Gastric Inhibitory Peptide (human) improves glucose intolerance, type 2 diabetes, beta-cell glucose insensitivity, insulin resistance and reduced insulin secretion<sup>[2]</sup>.

Acetyl Gastric Inhibitory Peptide (human) has metabolic stability and hypoglycemic and insulin modulating activities of two fatty acid derivatized N-terminally acetylated GIP analogs were evaluated in in vitro and in vivo<sup>[3]</sup>.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

## In Vivo

Acetyl Gastric Inhibitory Peptide (human) (25 nmol/kg; i.p.; single dose) shows resistance to plasma dipeptidylpeptidase IV degradation, resulting in enhanced biological activity and improved antidiabetic potential in vivo<sup>[1]</sup>.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

| Animal Model:   | Obese hyperglycaemic (ob/ob) mice <sup>[1]</sup>                                                                        |
|-----------------|-------------------------------------------------------------------------------------------------------------------------|
| Dosage:         | 25 nmol/kg                                                                                                              |
| Administration: | Intraperitoneal injection; single dose                                                                                  |
| Result:         | Lowered individual glucose values at 60 min together with the areas under the curve for glucose compared to native GIP. |

#### **REFERENCES**

- [1]. O'Harte FP, et al. Improved stability, insulin-releasing activity and antidiabetic potential of two novel N-terminal analogues of gastric inhibitory polypeptide: N-acetyl-GIP and pGlu-GIP. Diabetologia. 2002 Sep;45(9):1281-91.
- [2]. Gault Victor A, et al. GIP peptide analogues for treatment of diabetes, insulin resistance and obesity: World Intellectual Property Organization, WO2005082928[P]. 2005-12-01.
- [3]. O'Harte, et al. Analogs of gastric inhibitory polypeptide as a treatment for age related decreased pancreatic beta cell function: World Intellectual Property Organization, WO2007028632[P].2007-03-15.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com