γ-Fibrinogen 377-395

MedChemExpress

R

Cat. No.:	HY-P5121
CAS No.:	957792-67-5
Molecular Formula:	$C_{100}H_{165}N_{25}O_{28}S_{2}$
Molecular Weight:	2229.66
Sequence:	Tyr-Ser-Met-Lys-Glu-Thr-Thr-Met-Lys-Ile-Ile-Pro-Phe-Asn-Arg-Leu-Ser-Ile-Gly
Sequence Shortening:	YSMKETTMKIIPFNRLSIG
Target:	Others
Pathway:	Others
Storage:	Please store the product under the recommended conditions in the Certificate of Analysis.

γ-Fibrinogen377-395 is a fibrinogen-derived inhibitory peptide, as well as fibrinogen epitope. γ-Fibrinogen377-395 blocks microglia activation and inhibits fibrin-Mac-1 interactions in vitro, and suppresses experimental autoimmune encephalomyelitis (EAE) in mice in vivo. γ-Fibrinogen377-395 can be used for research in multiple sclerosis (MS), and other neuroinflammatory diseases associated with blood-brain barrier disruption and microglia activation ^[1] .		
γ-Fibrinogen377-395 (200 μM) blocks fibrin binding to Mac-1 that inhibits and adhesion of Mac-1–overexpressing cells to immobilized fibrinogen. γ-Fibrinogen377-395 inhibits microglia activation ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
 γ-Fibrinogen377-395 (30 µg/mouse; administered intranasally; once daily for 40 days) increases motor functions of mouse without affecting the peripheral immune response. γ-Fibrinogen377-395 does not affect the coagulation properties of fibrinogen^[1]. Immunized with γ377-395 peptide before EAE induction, γ377-395 peptide-vaccinated mice has an increases in motor strength and coordination compared with control^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only. 		
Animal Model:	PLP139-151-immunized mice with experimental autoimmune encephalomyelitis (EAE) $^{[1]}$	
Dosage:	30 μg/mouse	
Administration:	Administered intranasally; daily after the first paralytic episode in remitting relapsing EAE	
Result:	Reduced the progression and severity of EAE by specifically targeting microglia/macrophage activation in the CNS parenchyma without adverse hemorrhagic effects.	
	 VITY y-Fibrinogen377-395 is a microglia activation and encephalomyelitis (EAE) neuroinflammatory dise (P-Fibrinogen377-395 (20) immobilized fibrinogen. MCE has not independed (P-Fibrinogen377-395 (30) without affecting the perfibrinogen^[1]. Immunized with y377-395 (strength and coordination MCE has not independed (P-Fibrinogen^[1]. Immunized with y377-395 (strength and coordination MCE has not independed (P-Fibrinogen^[1]. Immunized with y377-395 (strength and coordination (P-Fibrinogen^[1]. Immunized with y377-395 (strength and (P-Fibrinogen^[1]. Immunized with y377-395 (strength	

REFERENCES

[1]. Adams RA, et al. The fibrin-derived gamma377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune

Product Data Sheet

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA