TAT-GluN2BCTM

Cat. No.:	HY-P5277	
CAS No.:	1587742-50-4	
Molecular Formula:	C ₂₂₄ H ₃₇₄ N ₈₆ O ₅₄	
Molecular Weight:	5135.91	
Sequence:	Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Lys-Asn-Arg-Asn-Lys-Leu-Arg-Arg-Gl n-His-Ser-Tyr-Lys-Phe-Glu-Arg-Gln-Lys-Ile-Leu-Asp-Gln-Arg-Phe-Phe-Glu	
Sequence Shortening:	YGRKKRRQRRRKKNRNKLRRQHSYKFERQKILDQRFFE	
Target:	DAPK	
Pathway:	Apoptosis	
Storage:	Please store the product under the recommended conditions in the Certificate of Analysis.	

BIOLOGICAL ACTIV			
Description	TAT-GluN2BCTM is a membrane-permeable DAPK1-targeting peptide. TAT-GluN2BCTM targets active DAPK1 to lysosomes for degradation. TAT-GluN2BCTM protects neurons from oxidative stress and NMDAR-mediated excitotoxicity by knocking down DAPK1. TAT-GluN2BCTM can be used in the study of neuroprotection ^[1] .		
IC ₅₀ & Target	DAPK1 ^[1] .		
In Vitro	TAT-GluN2BCTM (200 μM; 0.5, 2, 4 h) results in a time-dependent reduction in DAPK1 levels in NMDA-treated primary neuronal cultures ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Western Blot Analysis ^[1]		
	Cell Line:	primary neuronal cultures (NMDA-treated)	
	Concentration:	200 μΜ	
	Incubation Time:	0.5, 2, 4 h	
	Result:	Reduced DAPK1 levels in a time-dependent manner.	
In Vivo	TAT-GluN2BCTM (10 mg/kg; i.v.; single) results in a significant reduction in DAPK1 levels only in the ischemic side of the brain in rats ^[1] . TAT-GluN2BCTM (10 mg/kg; i.v.; single) shows prominent neuroprotection in the cortex and striatum of rats ^[1] . TAT-GluN2BCTM is capable of specific knockdown of the active (but not inactive) form of DAPK1 ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	Focal ischemia rat model $^{[1]}$.	
	Dosage:	10 mg/kg	
	Administration:	Intravenous injection; single.	

Product Data Sheet

RedChemExpress

Result:	Reduced the levels of DAPK1 only in the ischemic side of the brain. Significantly reduced the numbers of degenerating neurons in both striatum and cortical areas.

REFERENCES

[1]. Fan X, et al. Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat Neurosci. 2014 Mar;17(3):471-80.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA