

Screening Libraries

Proteins

Product Data Sheet

gdh2 Protein, Saccharolobus solfataricus (His, Strep)

Cat. No.: HY-P701896

gdh2; Glucose 1-dehydrogenase 2; GDH 2; GlcDH 2 Synonyms:

Species: Source: E. coli

Q97UH6 (K2-E368) Accession:

Gene ID: 72911600

Molecular Weight:

PROPERT	

Appearance	Solution.
Formulation	Supplied as a 0.22 μm filtered solution of 50 mM Tris-HCl, pH7.5, 200 mM NaCl, 20% glycerol.
Endotoxin Level	<1 EU/µg, determined by LAL method.
Reconsititution	Please use rapid thawing with running water to thaw the protein.
Storage & Stability	Stored at -80°C for 1 year. It is stable at -20°C for 3 months after opening. It is recommended to freeze aliquots at -80°C for extended storage. Avoid repeated freeze-thaw cycles.
Shipping	Shipping with dry ice.

DESCRIPTION

Background

The gdh2 protein functions as an enzyme that catalyzes the NAD(P)(+)-dependent oxidation of D-glucose to D-gluconate, utilizing gluconolactone as an intermediate. Notably, this enzyme is versatile and can employ both NAD(+) and NADP(+) as electron acceptors in the reaction. Its involvement in the non-phosphorylative variant of the Entner-Doudoroff pathway highlights its role in the degradation of glucose, contributing to cellular energy metabolism and carbon utilization.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 1 of 1