Product Data Sheet

KCNN2 Protein, Rat (Cell-Free, His)

Cat. No.: HY-P702349

Synonyms: Small conductance calcium-activated potassium channel protein 2; KCa2.2

Species:

Source: E. coli Cell-free Accession: P70604 (M1-S580)

Gene ID: 54262 Molecular Weight: 69.9 kDa

PROPERTIES

AA Sequence	M S S C R Y N G G V V G G G G G A S S P T G G G G S T G G G K L G H R R A L F E Y D K A S L Y S L A N G A D D W R I A M R L A F S Y A P S T F T D A S S R S I G S L W I I A A W T V G Y G D M V P N T Y T K A E K H V H N F V K K I D H A K V R	M R P L S N L S S S S A A A A A S S S A G G G G G G G	RRNLHEMDSE PEIVVSKPEH GHGSSSGTKS IFGMFGIVVM ILLGLIIVYH EILVCAIHPI IPMFLRLYLI FVMKTLMTIC DVTSNFLGAM IMGAGCTALV KNAAANVLRE HQLRSVKMEQ	A Q P L Q P P A S V N N S N N L A L Y G S K K K N Q N I G Y V I E T E L S W G A A R E I Q L F M V D P G N Y T F T W T A A R V M L L H S K L P G T V L L V F S I W L I S I T F L S I V A V V A R K L E L T W L I Y K N T K L R K L N D Q A N T L
		•		
			•	•
	VDLAKTQNIM	YDMISDLNER	SEDFEKRIVT	LETKLETLIG
	SIHALPGLIS	QTIRQQQRDF	IETQMENYDK	HVTYNAERSR
Appearance	S S S R R R R S S S Lyophilized powder.	TAPPTSSESS		
Formulation	Lyophilized from a 0.22 μm filtered solution of Tris/PBS-based buffer, 6% Trehalose, pH 8.0.			
Endotoxin Level	<1 EU/µg, determined by LAL method.			
Reconsititution	It is not recommended to reconstitute to a concentration less than $100 \mu g/mL$ in ddH_2O . For long term storage it is recommended to add 5-50% of glycerol (final concentration). Our default final concentration of glycerol is 50%. Customers could use it as reference.			
Storage & Stability	Stored at -20°C for 2 years. After reconstitution, it is stable at 4°C for 1 week or -20°C for longer (with carrier protein). It is recommended to freeze aliquots at -20°C or -80°C for extended storage.			
Shipping	Room temperature in continental US; may vary elsewhere.			

Page 1 of 2

DESCRIPTION

Background

The KCNN2 (Potassium Intermediate/Small Conductance Calcium-Activated Channel, Subfamily N, Member 2) protein functions as a voltage-independent potassium channel, responding to intracellular calcium levels according to references. Upon activation by calcium, it induces membrane hyperpolarization, playing a role in regulating neuronal excitability by contributing to the slow component of synaptic afterhyperpolarization. The inhibitory effects of bee venom neurotoxin apamin, as well as UCL 1684 and tetraethylammonium (TEA), highlight potential pharmacological modulation of KCNN2 activity.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com