

Product Data Sheet

FXN Protein, Mouse (P.pastoris, His)

Cat. No.: HY-P71735

Synonyms: Fxn; FrdaFrataxin; mitochondrial; Fxn

Species:

Source: P. pastoris

O35943 (78L-207T) Accession:

Gene ID: 14297

Molecular Weight: Approximately 16.4 kDa

PROPERTIES

	_		
ΔΔ	Sea	IIIΔr	\sim

LGTLDNPSSL DETAYERLAE ETLDSLAEFF EDLADKPYTL EDYDVSFGDG VLTIKLGGDL GTYVINKQTP NKQIWLSSPS SGPKRYDWTG KNWVYSHDGV SLHELLAREL TKALNTKLDL

SSLAYSGKGT

Biological Activity The enzyme activity of this recombinant protein is testing in progress, we cannot offer a guarantee yet.

Lyophilized powder. **Appearance**

Formulation Lyophilized after extensive dialysis against solution in Tris-based buffer, 50% glycerol.

Endotoxin Level <1 EU/µg, determined by LAL method.

Reconsititution It is not recommended to reconstitute to a concentration less than 100 $\mu g/mL$ in ddH₂O.

Storage & Stability Stored at -20°C for 2 years. After reconstitution, it is stable at 4°C for 1 week or -20°C for longer (with carrier protein). It is recommended to freeze aliquots at -20°C or -80°C for extended storage.

Shipping Room temperature in continental US; may vary elsewhere.

DESCRIPTION

Background

The FXN protein operates as a pivotal activator within the core iron-sulfur cluster (ISC) assembly complex, orchestrating persulfide transfer to the scaffolding protein ISCU and participating in [2Fe-2S] cluster assembly. FXN accelerates sulfur transfer from the NFS1 persulfide intermediate to ISCU and small thiols like L-cysteine and glutathione, leading to persulfuration and eventual sulfide release. It binds ferrous ion and is released from FXN upon the addition of both Lcysteine and reduced FDX2 during [2Fe-2S] cluster assembly. This ISC assembly complex is integral to de novo synthesis of a [2Fe-2S] cluster, the initial step in mitochondrial iron-sulfur protein biogenesis. The process involves the cysteine desulfurase complex (NFS1:LYRM4:NDUFAB1), initiating persulfide production, and FXN-dependent delivery to ISCU. FDX2

stabilizes this complex, providing reducing equivalents for [2Fe-2S] cluster assembly. The cluster is subsequently transferred from ISCU to chaperone proteins, including HSCB, HSPA9, and GLRX5. FXN may play a role in protecting against iron-catalyzed oxidative stress by catalyzing the oxidation of Fe(2+) to Fe(3+), exhibiting ferroxidase activity in its oligomeric form. It potentially acts as an iron chaperone, safeguarding the aconitase [4Fe-4S]2+ cluster, promoting enzyme reactivation, and serving as a high-affinity iron binding partner for FECH, contributing to mitochondrial heme biosynthesis. FXN also modulates the RNA-binding activity of ACO1, may participate in cytoplasmic iron-sulfur protein biogenesis, and could contribute to oxidative stress resistance and overall cell survival.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com