

Screening Libraries

Proteins

C

Product Data Sheet

MedChemExpress

ACVRL1/ALK1 Protein, Mouse (HEK293, His-Fc)

Cat. No.: HY-P72819

Synonyms: Serine/threonine-protein kinase receptor R3; SKR3; ALK-1; TSR-I; ACVRL1

Species: Mouse
Source: HEK293

Accession: Q61288 (M1-P119)

Gene ID: 11482

Molecular Weight: 50-55 kDa

PROPERTIES

	_		
$\Lambda \Lambda$	Sea	IIIΔN	60

MTLGSFRRGL LMLSVAFGLT RGDLAKPSKL VNCTCESPHC KRPFCQGSWC TVVLVREQGR HPQVYRGCGS LNQELCLGRP TEFLNHHCCY RSFCNHNVSL MLEATQTPSE EPEVDAHLP

Biological Activity The enzyme activity of this recombinant protein is testing in progress, we cannot offer a guarantee yet.

Appearance Lyophilized powder.

Formulation Lyophilized from a 0.2 μm filtered solution of PBS, pH 7.4. Normally 5 % - 8 % trehalose, mannitol and 0.01% Tween 80 are added as protectants before lyophilization.

Endotoxin Level <1 EU/µg, determined by LAL method.

Reconstitution It is not recommended to reconstitute to a concentration less than 100 μ g/mL in ddH₂O.

Storage & Stability

Stored at -20°C for 2 years. After reconstitution, it is stable at 4°C for 1 week or -20°C for longer (with carrier protein). It is recommended to freeze aliquots at -20°C or -80°C for extended storage.

Shipping Room temperature in continental US; may vary elsewhere.

DESCRIPTION

Background

ALK-1, also known as ACVRL1, is a type I receptor for TGF- β superfamily with 2 ligands, BMP9 and BMP10. ALK-1 is predominantly expressed in endothelial cells and plays a critical role in regulating angiogenesis [1][2].

Mature human ALK-1 shares 89% amino acid sequence identity with mouse and rat ALK-1. While, mouse ALK-1 shares 96% aa sequence identity with rat ALK-1 protein.

ALK-1 is able to bind to TGF- β 1 or activins in the presence of either T β R-II or activin type II receptors, respectively. However, ALK-1 does not elicit a specific transcriptional response. Thus, ALK-1 has been considered an "orphan" receptor. ALK-1 is a type I receptor that mediates signaling of BMP9 (bone morphogenetic protein) and BMP10, proteins in the TGF- β

superfamily. Signaling through ALK-1 results in phosphorylation of the intracellular Smad 1/5/8 cascade which activates proangiogenic transcription factors such as ID1 and ID3. ALK-1 binds to TGF-β1 and phosphorylates Smad1 and Smad5. Overexpression of ALK-1 in HepG2 cells inhibits the ALK5-mediated TGF-β1 response. The balance between ALK-1 and ALK5 may be crucial for controlling the properties of endothelium during angiogenesis^[1]. BMP9/BMP10/ALK-1 signaling controlled the specific gene expression program and survival of Kupffer cells (KCs) through a Smad4-dependent pathway. Functionally, the loss of ALK-1 resulted in impaired capture of L. monocytogenes and overwhelming disseminated infections [2].

ALK-1 is expressed in blood vessels during embryogenesis and adult stages. In addition, mutations of the ALK-1 gene have been linked to the type II hereditary hemorrhagic telangiectasia^[1]. ALK-1 inhibits BMP9-mediated Id-1 expression in human umbilical vein endothelial cells. In a chick chorioallantoic membrane assay, ALK-1 reduces VEGF-, FGF-, and BMP10-mediated vessel formation. In addition, ALK1 reduces tumor burden in mice receiving orthotopic grafts of MCF7 mammary adenocarcinoma cells^[3].

REFERENCES

- [1]. S P Oh, et al. Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2626-31.
- [2]. Dianyuan Zhao, et al. ALK1 signaling is required for the homeostasis of Kupffer cells and prevention of bacterial infection. J Clin Invest. 2022 Feb 1;132(3):e150489.
- [3]. Dianne Mitchell, et al. ALK1-Fc inhibits multiple mediators of angiogenesis and suppresses tumor growth. Mol Cancer Ther. 2010 Feb;9(2):379-88.
- [4]. Dongxing Zhu, et al. BMP-9 regulates the osteoblastic differentiation and calcification of vascular smooth muscle cells through an ALK1 mediated pathway. J Cell Mol Med. 2015 Jan;19(1):165-74.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA