

Product Data Sheet

FGF basic/bFGF Protein, Human (145a.a, His)

Cat. No.:	НҮ-Р7330А
Synonyms:	rHubFGF, 145a.a.; bFGF; FGF-2; HBGF-2; FGFB
Species:	Human
Source:	E. coli
Accession:	P09038-4 (A144-S288)
Gene ID:	2247
Molecular Weight:	Approximately 18 kDa

AA Sequence	ALPEDGGSGA FPPGHFKDPK RLYCKNGGFF LRIHPDGRVD GVREKSDPHI KLQLQAEERG VVSIKGVCAN RYLAMKEDGR LLASKCVTDE CFFFERLESN NYNTYRSRKY TSWYVALKRT GQYKLGSKTG PGQKAILFLP MSAKS
Biological Activity	Measured in a cell proliferation assay using NIH-3T3 mouse fibroblast cells.The ED ₅₀ for this effect is 0.1828 ng/mL, corresponding to a specific activity is 5.47×10 ⁶ units/mg.
Appearance	Lyophilized powder.
Formulation	Lyophilized from a 0.2 μm filtered solution of PBS, 300 mM NaCl, pH 7.4.
Endotoxin Level	<1 EU/µg, determined by LAL method.
Reconsititution	It is not recommended to reconstitute to a concentration less than 100 μg/mL in ddH ₂ O. For long term storage it is recommended to add a carrier protein (0.1% BSA, 5% HSA, 10% FBS or 5% Trehalose).
Storage & Stability	Stored at -20°C for 2 years. After reconstitution, it is stable at 4°C for 1 week or -20°C for longer (with carrier protein). It is recommended to freeze aliquots at -20°C or -80°C for extended storage.
Shipping	Room temperature in continental US; may vary elsewhere.

DESCRIPTION

Background

FGF-2/bFGF is a member of the fibroblast family and has a high affinity for heparin. FGF-2 plays an important role in tendon to bone healing, cartilage repair, bone repair, and nerve regeneration. FGF-2 specifically binds to tyrosine kinase receptors and activates the FGF/FGFR signaling pathway. Subsequently, FGF-2 influences cell proliferation, differentiation and apoptosis, as well as immune regulation by transducing other classical pathways. For example, FGF-2 regulates the JAK-STAT signaling pathway to regulate cartilage metabolism. FGF-2 also acts as a mitotic promoter to accelerate cell proliferation. Therefore, (1) FGF-2 is an important growth factor in the healing process of ligament/tendon injury. In vitro experiments, low-dose FGF-2 can stimulate the proliferation and differentiation of bone marrow mesenchymal stem cells, and up-regulate the mRNA expression of type I/III collagen and fibronectin. However, high doses of FGF-2 did not stimulate extracellular matrix (ECM) protein proliferation and gene expression. (2) FGF-2 is also an endogenous and intrinsic growth factor in cartilage repair. FGF-2 binds to heparan sulfate proteoglycan and is stored in the ECM of articular cartilage. When cartilage is damaged or degenerated, ECM rapidly releases FGF-2 and activates ERK signaling pathways to promote cartilage regeneration. FGF-2 exhibits a biphasic effect in combination with its specific receptor. FGF-2 combined with FGFR3 promoted the repair of articular cartilage. FGF-2 combined with FGFR1 promoted the degeneration of articular cartilage^[1]. FGF-2 is expressed in granulosa cells and colliculus cells, as well as hepatocellular cancer cells, but not in non-cancerous liver tissues. This reveals the role of FGF-2 in brain tumors, particularly glioblastoma. According to studies, FGF-2 is a known carcinogenic factor in GBM. FGF-2 increases the self-renewal of glioblastoma stem cells and contributes to the growth and vascularization of glioma^[2]. FGF-2 protein is highly conserved in some species, and the similarity rate of human FGF-2 protein sequence to rat, mouse, and bovine was 97.4%, 95.45%, and 98.71%, respectively.

REFERENCES

[1]. Zhang J, et al. FGF2: a key regulator augmenting tendon-to-bone healing and cartilage repair. Regen Med. 2020 Sep;15(9):2129-2142.

[2]. Jimenez-Pascual A, et al. FGF2: a novel druggable target for glioblastoma? Expert Opin Ther Targets. 2020 Apr;24(4):311-318.

[3]. Hankemeier S, et al. Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng. 2005 Jan-Feb;11(1-2):41-9.

Caution: Product has not been fully validated for medical applications. For research use only.