

Screening Libraries

Proteins

Product Data Sheet

RANKL/TNFSF11 Protein, Mouse

Cat. No.: HY-P7425

rMuRANK L/TNFSF11; TRANCE; CD254 Synonyms:

Species: Source: E. coli

O35235-1 (Q137-D316) Accession:

Gene ID: 21943

Molecular Weight: Approximately 20.1 kDa

PROPERTIES

AA Sequence	QRFSGAPAMM EGSWLDVAQR GKPEAQPFAH LTINAASIPS GSHKVTLSSW YHDRGWAKIS NMTLSNGKLR VNQDGFYYLY ANICFRHHET SGSVPTDYLQ LMVYVVKTSI KIPSSHNLMK GGSTKNWSGN SEFHFYSINV GGFFKLRAGE EISIQVSNPS LLDPDQDATY FGAFKVQDID
Biological Activity	1.Measured by its ability to induce osteoclast differentiation of RAW 264.7 mouse monocyte/macrophage cells. The ED ₅₀ is <1.808 ng/mL as measured by RAW 264.7 mouse monocyte/macrophage cells, corresponding to a specific activity of >5.531 × 10 ⁵ units/mg. 2. Measured by its binding ability in a functional ELISA. Immobilized mouse TNFSF11 at 10 μg/mL (100μL/well) can bind biotinylated Human TNFRSF11B. The ED ₅₀ for this effect is 0.0848 μg/mL.
Appearance	Lyophilized powder
Formulation	Lyophilized after extensive dialysis against 20 mM Tris, 150 mM NaCl, 1 mM EDTA, pH 8.0.
Endotoxin Level	<1.0 EU/µg, determined by LAL method.
Reconsititution	It is not recommended to reconstitute to a concentration less than 100 $\mu g/mL$ in ddH $_2$ O.
Storage & Stability	Stored at -20°C for 2 years. After reconstitution, it is stable at 4°C for 1 week or -20°C for longer (with carrier protein). It is recommended to freeze aliquots at -20°C or -80°C for extended storage.
Shipping	Room temperature in continental US; may vary elsewhere.

DESCRIPTION

RANKL (TNFSF11) belongs to TNF family. RANKL is a type II transmembrane protein and is a receptor activator of NF-κB Background

(RANK) ligand. RANKL is an activator of RANK. RANKL binds to RANK and induces the differentiation of

Page 1 of 2

monocyte/macrophage-lineage cells into osteoclasts and leads to osteoclast precursor maturation. In bone tissue, RANKL is expressed by osteoblasts, osteocytes and immune cells, especially in osteoblasts and osteocytes^[1]. RANKL is also expressed by T cells and increases proliferation and survival of dendritic cells^[2]. In mice, RANKL/RANK signaling attenuates inflammation in ischemic brains through a Toll-like receptor signaling pathway^[4].

RANKL consists of cytoplasmic domain (1-47), helical domain (48-68), and extracellular domain (69-317). The soluble chain (140-317) is released when cleaved by enzymes such as matrix metalloproteinases (MMP3 or 7) and ADAM $^{[1][3]}$. RANKL is critical for osteoclasts maturation, bone modeling, and bone remodeling, as well as the development of lymph nodes (LNs) $^{[1]}$.

REFERENCES

- [1]. Ono T, et al. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen. 2020 Feb 7;40:2.
- [2]. Li B, et al. Roles of the RANKL-RANK Axis in Immunity-Implications for Pathogenesis and Treatment of Bone Metastasis. Front Immunol. 2022 Mar 21;13:824117.
- [3]. Tobeiha M, et al. RANKL/RANK/OPG Pathway: A Mechanism Involved in Exercise-Induced Bone Remodeling. Biomed Res Int. 2020 Feb 19;2020:6910312.
- [4]. Shimamura M, et al. OPG/RANKL/RANK axis is a critical inflammatory signaling system in ischemic brain in mice. Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8191-6.
- [5]. He X, et al. Resveratrol prevents RANKL-induced osteoclast differentiation of murine osteoclast progenitor RAW 264.7 cells through inhibition of ROS production. Biochem Biophys Res Commun. 2010 Oct 22;401(3):356-62.
- [6]. Hofbauer LC, et al. Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J Mol Med (Berl). 2001 Jun;79(5-6):243-53.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA