

Product Data Sheet

FGFR-2 Protein, Human (sf9, His-GST)

Cat. No.:	HY-P76333
Synonyms:	Fibroblast growth factor receptor 2; FGFR-2; KSAM; KGFR; CD332; BEK
Species:	Human
Source:	Sf9 insect cells
Accession:	P21802 (M400-T821)
Gene ID:	2263
Molecular Weight:	Approximately 68 kDa.

PROPERTIES	
Biological Activity	The enzyme activity of this recombinant protein is testing in progress, we cannot offer a guarantee yet.
Appearance	Solution.
Formulation	Supplied as a 0.2 μm filtered solution of 20 mM Tris, 500 mM NaCl, pH 7.4, 10% gly.
Endotoxin Level	<1 EU/µg, determined by LAL method.
Reconsititution	N/A.
Storage & Stability	Stored at -80°C for 1 year. It is stable at -20°C for 3 months after opening. It is recommended to freeze aliquots at -80°C for extended storage. Avoid repeated freeze-thaw cycles.
Shipping	Shipping with dry ice.

DESCRIPTION

BackgroundFGFR-2 alpha IIIc protein, a tyrosine-protein kinase, serves as a cell-surface receptor for fibroblast growth factors and holds
a pivotal role in regulating cell proliferation, differentiation, migration, and apoptosis, as well as embryonic development.
Its indispensability is evident in normal embryonic patterning, trophoblast function, limb bud development, lung
morphogenesis, osteogenesis, and skin development. Moreover, FGFR-2 alpha IIIc plays a crucial role in osteoblast
differentiation, proliferation, and apoptosis, contributing significantly to normal skeleton development. While promoting
cell proliferation in keratinocytes and immature osteoblasts, it fosters apoptosis in differentiated osteoblasts. Upon ligand
binding, FGFR-2 alpha IIIc activates multiple signaling cascades, including the phosphorylation of PLCG1, FRS2, and PAK4.
Activation of PLCG1 triggers the production of cellular signaling molecules such as diacylglycerol and inositol 1,4,5-
trisphosphate. Phosphorylation of FRS2 leads to the recruitment of GRB2, GAB1, PIK3R1, and SOS1, mediating the activation
of RAS, MAPK1/ERK2, MAPK3/ERK1, the MAP kinase signaling pathway, and the AKT1 signaling pathway. To regulate FGFR2
signaling, the protein undergoes down-regulation through ubiquitination, internalization, and degradation. Mutations
resulting in constitutive kinase activation or impairing normal FGFR2 maturation, internalization, and degradation lead to
aberrant signaling. Additionally, overexpressed FGFR2 promotes the activation of STAT1.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA