

Product Data Sheet

Nidanilimab

Cat. No.:	HY-P99379	
CAS No.:	2171061-85-9	
Target:	Interleukin Related	
Pathway:	Immunology/Inflammation	
Storage:	Please store the product under the recommended conditions in the Certificate of Analysis.	

BIOLOGICAL ACTIVITY			
scription	Nidanilimab (CAN04) is a fully humanized monoclonal anti-IL1RAP antibody with a K _d value of 1.10 pM. Nidanilimab blocks IL1 α and IL1 β signaling and stimulates the immune system to destroy tumour cells. Nidanilimab can be used in research of non-small lung cancer (NSCLC) and pancreatic ductal adenocarcinoma (PDAC) ^{[1][2]} .		
50 & Target	IL-1α	ΙL-1β	
Vitro	Nidanilimab (CAN04; 20 μg/mL; murine MC38 colon cancer cells) has glycoengineered to mediate an enhanced antibody- dependent cellular cytotoxicity (ADCC, EC ₅₀ <1 nM) ^[2] . Nidanilimab (20 μg/mL; murine MC38 colon cancer cells) blocks IL1α and IL1β signaling with IC ₅₀ values of 3.9 nM and 4.1 nM, respectively. MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	Nidanilimab (CAN04; 10 mg/kg; i.p.; nude C57Bl/6 mice) increases the efficacy of <u>Cisplatin</u> (HY-17394)/ <u>Gemcitabine</u> (HY-17026) and <u>Carboplatin</u> (HY-17393)/ <u>Gemcitabine</u> (HY-17026), two commonly used platinum-based chemotherapies ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	U U		
	Result:	Displayed a significantly stronger anti-tumor effect compared to isotype control with chemotherapy.	
Vitro	non-small lung cancer (NSCLC) IL-1α Nidanilimab (CAN04; 20 µg/ml dependent cellular cytotoxicit Nidanilimab (20 µg/mL; murin nM, respectively. MCE has not independently co Nidanilimab (CAN04; 10 mg/kg 17026) and <u>Carboplatin</u> (HY-17 MCE has not independently co Animal Model: Dosage: Administration:	c) and pancreatic ductal adenocarcinoma (PDAC) ^{[1][2]} . IL-1β IL, murine MC38 colon cancer cells) has glycoengineered to mediate an enhanced antiboc by (ADCC, EC ₅₀ <1 nM) ^[2] . ne MC38 colon cancer cells) blocks IL1α and IL1β signaling with IC ₅₀ values of 3.9 nM and 4 confirmed the accuracy of these methods. They are for reference only. g; i.p.; nude C57Bl/6 mice) increases the efficacy of <u>Cisplatin</u> (HY-17394)/ <u>Gemcitabine</u> (HY 7393)/ <u>Gemcitabine</u> (HY-17026), two commonly used platinum-based chemotherapies ^[1] . onfirmed the accuracy of these methods. They are for reference only. Nude C57Bl/6 mice with LU2503 NSCLC PDX model ^[1] 10 mg/kg Intraperitoneal injection Displayed a significantly stronger anti-tumor effect compared to isotype control with	

REFERENCES

[1]. Millrud CR, et, al. The anti-IL1RAP antibody CAN04 increases tumor sensitivity to platinum-based chemotherapy.

[2]. Rydberg Millrud C, et, al. Blockade of IL-1 α and IL-1 β signaling by the anti-IL1RAP antibody nadunolimab (CAN04) mediates synergistic anti-tumor efficacy with chemotherapy. Cancer Immunol Immunother. 2022 Aug 29.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA