Proteins

Product Data Sheet

Talacotuzumab

Cat. No.: HY-P99395 CAS No.: 1826831-79-1

Interleukin Related Target:

Immunology/Inflammation Pathway:

Storage: Please store the product under the recommended conditions in the Certificate of Analysis.

BIOLOGICAL ACTIVITY

Description

Talacotuzumab (JNJ 56022473; CSL 362) is an IgG1-type fully humanized, CD123-neutralizing monoclonal antibody containing a modified Fc structure. Talacotuzumab has K_Ds of 0.43 nM, 188 nM, 46 nM, 16.8 nM for CD123, CD32b/c, CD16-158F, CD16-158V, respectively. Talacotuzumab inhibits IL-3 binding to CD123, antagonizing IL-3 signaling in target cells. Talacotuzumab has mutated the Fc region to increase affinity for CD16 (FcyRIIIa), thereby enhancing antibody-dependent cell-mediated cytotoxicity (ADCC). Talacotuzumab is highly effective in vivo reducing leukemic cell growth in acute myeloid leukemia (AML) xenograft mouse models^{[1][2][3][4]}.

In Vitro

Talacotuzumab (JNJ 56022473; CSL 362) strongly mediates ADCC of TF-1 cells with an ic50 of 5 ng/ml (33 pM)^[1]. Talacotuzumab (1 μg/ml; pretreatment for 24 hours) inhibits TLR7-stimulated (Imiquimod; HY-B0180; 0.5 μM; for 6 days) and TLR9-stimulated (CpG C; 0.5 μM; for 6 days) IFN-α production in both SLE donors and healthy donors plasmacytoid dendritic cells (pDCs) and basophils, whereas TLR4-stimulated (LPS; HY-D1056; 10 µg/ml) production is not significantly reduced. Talacotuzumab inhibits TLR7- and TLR9-induced plasmablast expansion and proliferation by depletion of plasmacytoid dendritic cells (pDCs)^[2].

In Vivo

Talacotuzumab (JNJ 56022473; CSL 362; 300 μg; ip; thrice weekly for 5 weeks) results in a significant delay in tumor growth compared with an isotype control in acute myeloid leukaemia mice xenografts [1].

Talacotuzumab (1, 10, 30 mg/kg; s.c.; single injection) has maximal serum concentrations at 48 hours of ~12, 190, and 380 μ g/ml at doses of 1, 10, and 30 mg/kg in naive cynomolgus monkeys, respectively^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Nonobese diabetic/severe combined immunodeficiency mice injected intravenously AML xenograft cells (AML-5) $^{[1]}$
Dosage:	300 μg
Administration:	IP; thrice weekly for 5 weeks
Result:	Resulted in a significant delay in tumor growth compared with an isotype control.

REFERENCES

- [1]. S J Busfield, et al. Targeting of acute myeloid leukemia in vitro and in vivo with an anti-CD123 mAb engineered for optimal ADCC. Leukemia. 2014 Nov;28(11):2213-21.
- [2]. Shereen Oon, et al. A cytotoxic anti-IL-3Ra antibody targets key cells and cytokines implicated in systemic lupus erythematosus. JCI Insight. 2016 May 5;1(6):e86131.
- [3]. Erwin M Lee, et al. Efficacy of an Fc-modified anti-CD123 antibody (CSL362) combined with chemotherapy in xenograft models of acute myelogenous leukemia in immunodeficient mice. Haematologica. 2015 Jul;100(7):914-26.
- [4]. L H Xie, et al. CD123 target validation and preclinical evaluation of ADCC activity of anti-CD123 antibody CSL362 in combination with NKs from AML patients in remission. Blood Cancer J. 2017 Jun 2;7(6):e567.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com