Product Data Sheet

Protein kinase inhibitor 1 hydrochloride

Cat. No.: HY-U00439A CAS No.: 2321337-71-5 Molecular Formula: $C_{18}H_{18}CIN_5O_3S$

Molecular Weight: 419.89 DYRK Target:

Pathway: Protein Tyrosine Kinase/RTK

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

H₂O: 9.09 mg/mL (21.65 mM; Need ultrasonic) DMSO: 8.33 mg/mL (19.84 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg	
	1 mM	2.3816 mL	11.9079 mL	23.8158 mL	
	5 mM	0.4763 mL	2.3816 mL	4.7632 mL	
	10 mM	0.2382 mL	1.1908 mL	2.3816 mL	

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 0.83 mg/mL (1.98 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 0.83 mg/mL (1.98 mM); Clear solution

BIOLOGICAL ACTIVITY

Description Protein kinase inhibitor 1 hydrochloride is a potent HIPK2 inhibitor, with IC₅₀s of 136 and 74 nM for HIPK1 and HIPK2, and a K d of 9.5 nM for HIPK2.

IC₅₀ & Target DYRK1 DYRK2

In Vitro Protein kinase inhibitor 1 hydrochloride is a potent HIPK2 inhibitor, with IC₅₀s of 136 and 74 nM for HIPK1 and HIPK2, and a K $_{\rm d}$ of 9.5 nM for HIPK2. Protein kinase inhibitor 1 (Compound A64) is not an effective Cdk1 inhibitor (IC $_{50}$ > 10 μ M). A64 is moderately selective across a panel of kinases, with K_ds of 3.7 nM (PIM3), 6.1 nM (CSNK2A2), 6.1 nM (CSNK2A2), 8.8 nM (DYRK1A), 9.5 nM (DAPK1), 31 nM (CSNK2A1), 37 nM (PIM1), 130 nM (DRAK2), 150 nM (CLK2), 190 nM (DRAK1), 220 nM (ULK2), 240 nM (CLK1), 250 nM (DYRK2), and 390 nM (ERK8) and IC₅₀s of 19 nM (DYRK1A), 62 nM (DYRK1B), and 74 nM (HIPK2)^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- EBioMedicine. 2022 Sep 28;85:104274.
- EBioMedicine. 2021 Nov 24;74:103713.
- J Biochem Mol Toxicol. 2021 Mar 9.

See more customer validations on $\underline{www.MedChemExpress.com}$

				F	

[1]. Miduturu CV, et al. High-throughput kinase profiling: a more efficient approach toward the discovery of new kinaseinhibitors. Chem Biol. 2011 Jul 29;18(7):868-79.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA