Inhibitors

Sodium 3-methyl-2-oxobutanoate-13C4,d4

Cat. No.: HY-W006057AS2 CAS No.: 1185115-88-1 Molecular Formula: $C_{13}C_4H_3D_4NaO_3$

Molecular Weight: 146.09

Target: Endogenous Metabolite; Isotope-Labeled Compounds

Pathway: Metabolic Enzyme/Protease; Others

Storage: -20°C, protect from light

* In solvent : -80°C, 6 months; -20°C, 1 month (protect from light)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

H₂O: 250 mg/mL (1711.27 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	6.8451 mL	34.2255 mL	68.4510 mL
	5 mM	1.3690 mL	6.8451 mL	13.6902 mL
	10 mM	0.6845 mL	3.4225 mL	6.8451 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	$So dium\ 3-methyl-2-oxobutano at e-{}^{13}\mathrm{C}_4, d_4 \ is\ the\ deuterium\ and\ }^{13}\mathrm{C}\ labeled\ Sodium\ 3-methyl-2-oxobutano at e[1].$
In Vitro	Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com