Product Data Sheet

L-Lysine-¹³C₆, ¹⁵N₂ dihydrochloride

 ${}^{13}C_{6}H_{16}Cl_{2}{}^{15}N_{2}O_{2}$

Cat. No.: HY-W009762S CAS No.: 202406-54-0

Molecular Weight: 227.05

Molecular Formula:

Isotope-Labeled Compounds Target:

Pathway: Others

Storage: 4°C, sealed storage, away from moisture and light

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

$$H_2^{13}C$$
 OH

 $H_2^{13}C$ $H_2^{15}NH_2$
 $H_2^{15}N$ $H_2^{15}N$

HCI

HCI

SOLVENT & SOLUBILITY

In Vitro

DMSO: 125 mg/mL (550.54 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	4.4043 mL	22.0216 mL	44.0432 mL
	5 mM	0.8809 mL	4.4043 mL	8.8086 mL
	10 mM	0.4404 mL	2.2022 mL	4.4043 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	$ L-Lysine-{}^{13}C_6, {}^{15}N_2 \ (dihydrochloride) \ is \ a^{15}N-labeled \ and \ {}^{13}C-labled \ L-Lysine \ dihydrochloride[1]. $	
In Vitro	Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential affect the pharmacokinetic and metabolic profiles of drugs ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	

REFERENCES

[1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019 Feb;53(2):211-216.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com