Inhibitors

•

Screening Libraries

•

Proteins

2'-Deoxyadenosine-5'-monophosphate-¹³C₁₀ dilithium

MedChemExpress

Cat. No.: Molecular Formula: Molecular Weight: Target: Pathway: Storage:	HY-W016009S3 ¹³ C ₁₀ H ₁₂ Li ₂ N ₅ O ₆ P 353.01 Isotope-Labeled Compounds; Endogenous Metabolite Others; Metabolic Enzyme/Protease Please store the product under the recommended conditions in the Certificate of Analysis	$\begin{array}{c} & \overset{NH_2}{\overset{N_{13}C}{\leftarrow}} \\ O & H^{13}C^{'} \overset{N_{13}C}{\leftarrow} \overset{N_{13}}{\overset{N_{13}C}{\leftarrow}} \overset{N_{13}}{\overset{N_{13}C}{\leftarrow}} \\ \overset{N_{13}C}{\overset{N_{13}C}{\leftarrow}} \overset{N_{13}}{\overset{N_{13}C}{\leftarrow}} \\ \overset{N_{13}C}{\overset{N_{13}C}{\leftarrow}} \overset{N_{13}}{\overset{N_{13}C}{\leftarrow}} \\ \overset{L_{10}}{\overset{I_{13}C}{\overset{I_{13}C}{\leftarrow}}} \overset{N_{13}}{\overset{I_{13}C}{\leftarrow}} \\ \overset{I_{13}C}{\overset{I_{13}C}{\leftarrow}} \overset{N_{13}}{\overset{I_{13}C}{\leftarrow}} \\ \overset{I_{13}C}{\overset{I_{13}C}{\leftarrow}} \overset{N_{13}}{\overset{I_{13}C}{\leftarrow}} \\ \overset{I_{13}C}{\overset{I_{13}C}{\leftarrow}} \overset{N_{13}}{\overset{I_{13}C}{\leftarrow}} \\ \overset{I_{13}C}{\overset{I_{13}C}{\leftarrow}} \\ \overset{I_{13}C}{\overset{I_{13}C}{\leftarrow} \\ \overset{I_{13}C}{\overset} \\ \overset{I_{13}C}{\overset} \\ \overset{I_{13}C}{\overset} & \overset{I_{13}C}{\overset} \\ \overset{I_{13}C}{\overset} & \overset{I_{13}C}{\phantom} \\ \overset{I_{13}C}{\overset} & \overset{I_{13}C}{\overset} & \overset{I_{13}C}{\overset} & $
-	Analysis.	H' ³ C — ' ³ CH ₂ OH

BIOLOGICAL ACTIVITY		
BIOLOGICAL ACTIVITY		
Description	2'-Deoxyadenosine-5'-monophosphate- ¹³ C ₁₀ dilithium is ¹³ C-labeled 2'-Deoxyadenosine-5'-monophosphate (HY-W016009). 2'-Deoxyadenosine 5'-monophosphate, a nucleic acid AMP derivative, is a deoxyribonucleotide found in DNA. 2'- Deoxyadenosine 5'-monophosphate can be used to study adenosine-based interactions during DNA synthesis and DNA damage.	
In Vitro	Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	

REFERENCES

[1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019 Feb;53(2):211-216.

[2]. Katsuya Narumi, et al. Mutual role of ecto-5'-nucleotidase/CD73 and concentrative nucleoside transporter 3 in the intestinal uptake of dAMP. PLoS One. 2019 Oct 21;14(10):e0223892.

[3]. V Duarte, et al. Insertion of dGMP and dAMP during in vitro DNA synthesis opposite an oxidized form of 7,8-dihydro-8-oxoguanine. Nucleic Acids Res. 1999 Jan 15;27(2):496-502.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA