Proteins

Alkynyl Palmitic Acid

Cat. No.: HY-W040304 CAS No.: 99208-90-9 Molecular Formula: C₁₆H₂₈O₂ Molecular Weight: 252.39

Target: **PROTAC Linkers**

Pathway: **PROTAC**

Storage: Powder -20°C 3 years

> In solvent -80°C 6 months

> > -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

			٠.			
ln	٦	•	п	۰	r	$\boldsymbol{\cap}$

DMSO: 100 mg/mL (396.21 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.9621 mL	19.8106 mL	39.6212 mL
	5 mM	0.7924 mL	3.9621 mL	7.9242 mL
	10 mM	0.3962 mL	1.9811 mL	3.9621 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 2.5 mg/mL (9.91 mM); Suspended solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (9.91 mM); Suspended solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (9.91 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Alkynyl Palmitic Acid (Alk-C16) is an alkyl chain-based PROTAC linker that can be used in the synthesis of PROTACs ^[1] . Alkynyl Palmitic Acid is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azidealkyne cycloaddition (CuAAc) with molecules containing Azide groups.
IC ₅₀ & Target	Alkyl-Chain
In Vitro	PROTACs contain two different ligands connected by a linker; one is a ligand for an E3 ubiquitin ligase and the other is for the target protein. PROTACs exploit the intracellular ubiquitin-proteasome system to selectively degrade target proteins ^[1] .

	MCE has not independently confirmed the accuracy of these methods. They are for reference only.
EFERENCES	
l. An S, et al. Small-molecu	rule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018 Oct;36:553-562
	Caution: Product has not been fully validated for medical applications. For research use only.
	Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com
	Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com