

Saccharopine hydrochloride

Cat. No.: HY-W040307B Molecular Formula: $C_{11}H_{21}CIN_2O_6$

Molecular Weight: 313

Target: **Endogenous Metabolite** Pathway: Metabolic Enzyme/Protease

Storage: -20°C, sealed storage, away from moisture and light

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

$$HO$$
 NH_2
 OOH
 OOH
 OOH

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

H₂O: 250 mg/mL (798.72 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.1949 mL	15.9744 mL	31.9489 mL
	5 mM	0.6390 mL	3.1949 mL	6.3898 mL
	10 mM	0.3195 mL	1.5974 mL	3.1949 mL

Please refer to the solubility information to select the appropriate solvent.

DI	\cap	OCI	CAI	۸CT	IVITY
DI	UL	UUI	CAL	_ AC I	1 1 1 1 1

Description	Saccharopine (L-Saccharopine) hydrochloride, a lysine degradation intermediate, is a mitochondrial toxin. Lysine and α -ketoglutarate are converted into Saccharopine hydrochloride by the lysine-ketoglutarate reductase. Saccharopine hydrochloride is then oxidized to α -aminoapidate semialdehyde and glutamate by the saccharopine dehydrogenase. Saccharopine hydrochloride impairs development by disrupting mitochondrial homeostasis [1][2][3].
IC ₅₀ & Target	Human Endogenous Metabolite
In Vitro	Saccharopine accumulation leads to mitochondrial damage and functional loss which is induced by saccharopine dehydrogenase (SDH) mutations of α -aminoadipate semialdehyde synthase (AASS)-1 in C. elegans ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Saccharopine accumulation induces mitochondrial damage and progressive postnatal growth retardation in Aass mutant $mice^{[1]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

- [1]. Zhou J, et, al. The lysine catabolite saccharopine impairs development by disrupting mitochondrial homeostasis. J Cell Biol. 2019 Feb 4;218(2):580-597.
- [2]. Leandro J, et, al. Saccharopine, a lysine degradation intermediate, is a mitochondrial toxin. J Cell Biol. 2019 Feb 4;218(2):391-392.
- [3]. Papes F, et, al. Lysine degradation through the saccharopine pathway in mammals: involvement of both bifunctional and monofunctional lysine-degrading enzymes in mouse. Biochem J. 1999 Dec 1;344 Pt 2(Pt 2):555-63.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com