BIOLOGICAL ACTIVITY

Description
Chelidonic acid is a component of Chelidonium majus L., used as a mild analgesic, an antimicrobial, an acental nervous system sedative. Chelidonic acid also shows anti-inflammatory activity. Chelidonic acid has potential to inhibit IL-6 production by blocking \(\text{NF-\kappa B} \) and \(\text{caspase-1} \)[1]. Chelidonic acid is a glutamate decarboxylase inhibitor, with a \(K_i \) of 1.2 \(\mu M \)[2].

IC\(_{50} \) & Target

<table>
<thead>
<tr>
<th>IC(_{50}) & Target</th>
<th>NF-\kappa B</th>
<th>Caspase-1</th>
<th>Glutamate decarboxylase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2 (\mu M) (Ki)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Vitro
Chelidonic acid dose-dependently decreases IL-6 production at 0.1-10 \(\mu M \), inhibits expression of IL-6 mRNA at 1-10 \(\mu M \)[2].
Chelidonic acid (0.1-10 \(\mu M \)) decreases caspase-1 activation, nuclear NF-\kappa B activation, and increases cytosol NF-\kappa B activation[1].
Chelidonic acid is a glutamate decarboxylase inhibitor, with a \(K_i \) of 1.2 \(\mu M \). Chelidonic acid does not promote formation of apoenzyme or react with free pyridoxal-P[2].

In Vivo
Chelidonic acid (0.2, 2 mg/kg p.o.) attenuates allergic reaction induced by ovalbumin in mice[3].

REFERENCES

