N6-Diazo-L-Fmoc-lysine

Cat. No.:	HY-W04820	5			
CAS No.:	159610-89-6				
Molecular Formula:	C ₂₁ H ₂₂ N ₄ O ₄				
Molecular Weight:	394.42				
Target:	Amino Acid Derivatives				
Pathway:	Others				
Storage:	Powder	-20°C	3 years		
		4°C	2 years		
	In solvent	-80°C	6 months		
		-20°C	1 month		

SOLVENT & SOLUBILITY

	Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
Pre		1 mM	2.5354 mL	12.6768 mL	25.3537 mL
		5 mM	0.5071 mL	2.5354 mL	5.0707 mL
		10 mM	0.2535 mL	1.2677 mL	2.5354 mL

BIOLOGICAL ACTIVITY

Description

N6-Diazo-L-Fmoc-lysine is an active compand and can be used in a variety of chemical studies. N6-Diazo-L-Fmoc-lysine is a click chemistry reagent, it contains an Azide group and can undergo copper-catalyzed azide-alkyne cycloaddition reaction (CuAAc) with molecules containing Alkyne groups. Strain-promoted alkyne-azide cycloaddition (SPAAC) can also occur with molecules containing DBCO or BCN groups.

E-mail: tech@MedChemExpress.com

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

www.MedChemExpress.com

Product Data Sheet

O O OH NENEN