

# **Product** Data Sheet

## G6PDi-1

Cat. No.: HY-W107464 CAS No.: 2457232-14-1 Molecular Formula:  $C_{14}H_{12}N_4OS$ Molecular Weight: 284.34 PDI Target:

Pathway: Cell Cycle/DNA Damage; Metabolic Enzyme/Protease

-20°C

Storage: Powder

In solvent

4°C 2 years -80°C 6 months

-20°C 3 years

#### **SOLVENT & SOLUBILITY**

In Vitro

DMSO: 50 mg/mL (175.85 mM; Need ultrasonic)

1 month

| Preparing<br>Stock Solutions | Solvent Mass<br>Concentration | 1 mg      | 5 mg       | 10 mg      |
|------------------------------|-------------------------------|-----------|------------|------------|
|                              | 1 mM                          | 3.5169 mL | 17.5846 mL | 35.1692 mL |
|                              | 5 mM                          | 0.7034 mL | 3.5169 mL  | 7.0338 mL  |
|                              | 10 mM                         | 0.3517 mL | 1.7585 mL  | 3.5169 mL  |

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (8.79 mM); Suspended solution; Need ultrasonic

### **BIOLOGICAL ACTIVITY**

Description G6PDi-1 is a reversible and non-competitive glucose-6-phosphate dehydrogenase (G6PD) inhibitor with an IC<sub>50</sub> of 0.07 μM

for human G6PD. G6PDi-1 depletes NADPH most strongly in lymphocytes. G6PDi-1 markedly decreases inflammatory

cytokine production in T cells<sup>[1]</sup>.

G6PDi-1 (10 μM, 2 h) increases the NADP+/NADPH ratio in mouse CD8+ and CD4+ T cells<sup>[1]</sup>. In Vitro

G6PDi-1 (50  $\mu$ M, 0-300 min) inhibits mouse and human neutrophil oxidative burst<sup>[1]</sup>.

G6PDi-1 inhibits the activity of G6PDH in lysates of cultured astrocytes with an IC $_{50}$  of 102 nM, and lowers the total cellular WST1 reduction  $(0-100 \mu M, 60 min)^{[2]}$ .

G6PDi-1 (0-100 μM,) in combination with CB-839 (0-48 nM) shows synergistic cytotoxicity against A549 (KEAP1 mutant) cells and KPK (Keap1 KO) cells<sup>[3]</sup>.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

#### **REFERENCES**

- [1]. Watermann P, et al. G6PDi-1 is a Potent Inhibitor of G6PDH and of Pentose Phosphate pathway-dependent Metabolic Processes in Cultured Primary Astrocytes. Neurochem Res. 2023 Oct;48(10):3177-3189.
- [2]. Ding H, et al. Activation of the NRF2 antioxidant program sensitizes tumors to G6PD inhibition. Sci Adv. 2021 Nov 19;7(47):eabk1023.
- [3]. Jonathan M Ghergurovich, et al. A small molecule G6PD inhibitor reveals immune dependence on pentose phosphate pathway. Nat Chem Biol. 2020 Jul;16(7):731-739.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA