Product Data Sheet

Glycine-¹³C₂,¹⁵N

Cat. No.: HY-Y0966S6
CAS No.: 211057-02-2

Molecular Formula: ¹³C₂H₅¹⁵NO₂

Molecular Weight: 78.05

Target: iGluR; Endogenous Metabolite

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling; Metabolic Enzyme/Protease

Storage: 4°C, sealed storage, away from moisture and light

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

H₂¹⁵N 13C OH

BIOLOGICAL ACTIVITY

Description	Glycine- 13 C ₂ , 15 N is the 13 C- and 15 N-labeled Glycine. Glycine is an inhibitory neurotransmitter in the CNS and also acts as a co-agonist along with glutamate, facilitating an excitatory potential at the glutaminergic N-methyl-D-aspartic acid (NMDA) receptors.
IC ₅₀ & Target	NMDA Receptor
In Vitro	Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Screening Libraries

Inhibitors

Proteins