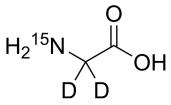
Proteins

Glycine-¹⁵N,d₂

Cat. No.: HY-Y0966S9 CAS No.: 2732915-89-6 Molecular Formula: $C_{2}H_{3}D_{2}^{15}NO_{2}$

Molecular Weight: 78.07


Target: iGluR; Endogenous Metabolite; Isotope-Labeled Compounds

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling; Metabolic

Enzyme/Protease; Others

Please store the product under the recommended conditions in the Certificate of Storage:

Analysis.

Product Data Sheet

BIOLOGICAL ACTIVITY

Description	Glycine- 15 N,d $_2$ is the deuterium and 15 N-labeled Glycine. Glycine is an inhibitory neurotransmitter in the CNS and also acts as a co-agonist along with glutamate, facilitating an excitatory potential at the glutaminergic N-methyl-D-aspartic acid (NMDA) receptors.
IC ₅₀ & Target	NMDA Receptor
In Vitro	Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216.

Caution: Product has not been fully validated for medical applications. For research use only.