Dimethyl malonate

Cat. No.: HY-Y1787 CAS No.: 108-59-8 Molecular Formula: C5H8O4 Molecular Weight: 132.11 Target: **Apoptosis** Pathway: **Apoptosis**

Storage: Pure form -20°C 3 years

2 years

-80°C 6 months In solvent

> -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (756.94 mM; Need ultrasonic) H₂O: 100 mg/mL (756.94 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	7.5694 mL	37.8472 mL	75.6945 mL
	5 mM	1.5139 mL	7.5694 mL	15.1389 mL
	10 mM	0.7569 mL	3.7847 mL	7.5694 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (18.92 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (18.92 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (18.92 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Dimethyl malonate is a competitive inhibitor of succinate dehydrogenase (SDH). Dimethyl malonate is able to cross the blood-brain barrier and hydrolyse to malonate. Dimethyl malonate reduces neuronal apoptosis ^[1] .
In Vivo	Dimethyl malonate (6 mg/kg/min; intravenous infusion; 51 min) promotes return of spontaneous circulation (ROSC) and neurological performance in rats after cardiac arrest ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Sprague-Dawley male rats, cardiac arrest model $^{[1]}$
Dosage:	6 mg/kg/min
Administration:	Intravenous infusion, 51 min
Result:	Improved ROSC after CA. Prevented the decline in neurological function and inhibited the apoptosis of hippocampal neurons at day 3 after CPR. Inhibited caspase-3 cleavage and increased HIF- 1α expression at day 3 after CPR. Decreased the level of oxidative stress at day 3 after CPR. Inhibited excessive hyperpolarization of MMP and restrained the leakage of cytochrome C after 45 min reperfusion.

REFERENCES

[1]. Xu J, et al. Inhibiting Succinate Dehydrogenase by Dimethyl Malonate Alleviates Brain Damage in a Rat Model of Cardiac Arrest. Neuroscience. 2018 Nov 21;393:24-32.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA